尽管学习已成为现代信息处理的核心组成部分,但现在有足够的证据表明它可以导致偏见,不安全和有偏见的系统。因此,对学习要求施加要求至关重要,尤其是在达到社会,工业和医疗领域的关键应用程序时。但是,大多数现代统计问题的非跨性别性只有通过限制引入而加剧。尽管通常可以使用经验风险最小化来学习良好的无约束解决方案,即使获得满足统计约束的模型也可能具有挑战性。更重要的是,一个好。在本文中,我们通过在经验双重领域中学习来克服这个问题,在经验的双重领域中,统计学上的统计学习问题变得不受限制和确定性。我们通过界定经验二元性差距来分析这种方法的概括特性 - 即,我们的近似,可拖动解决方案与原始(非凸)统计问题的解决方案之间的差异 - 并提供实用的约束学习算法。这些结果建立了与经典学习理论的约束,从而可以明确地在学习中使用约束。我们说明了这种理论和算法受到速率受限的学习应用,这是在公平和对抗性鲁棒性中产生的。
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning.
translated by 谷歌翻译
The emergence of large pretrained models has enabled language models to achieve superior performance in common NLP tasks, including language modeling and question answering, compared to previous static word representation methods. Augmenting these models with a retriever to retrieve the related text and documents as supporting information has shown promise in effectively solving NLP problems in a more interpretable way given that the additional knowledge is injected explicitly rather than being captured in the models' parameters. In spite of the recent progress, our analysis on retriever-augmented language models shows that this class of language models still lack reasoning over the retrieved documents. In this paper, we study the strengths and weaknesses of different retriever-augmented language models such as REALM, kNN-LM, FiD, ATLAS, and Flan-T5 in reasoning over the selected documents in different tasks. In particular, we analyze the reasoning failures of each of these models and study how the models' failures in reasoning are rooted in the retriever module as well as the language model.
translated by 谷歌翻译
Graph learning problems are typically approached by focusing on learning the topology of a single graph when signals from all nodes are available. However, many contemporary setups involve multiple related networks and, moreover, it is often the case that only a subset of nodes is observed while the rest remain hidden. Motivated by this, we propose a joint graph learning method that takes into account the presence of hidden (latent) variables. Intuitively, the presence of the hidden nodes renders the inference task ill-posed and challenging to solve, so we overcome this detrimental influence by harnessing the similarity of the estimated graphs. To that end, we assume that the observed signals are drawn from a Gaussian Markov random field with latent variables and we carefully model the graph similarity among hidden (latent) nodes. Then, we exploit the structure resulting from the previous considerations to propose a convex optimization problem that solves the joint graph learning task by providing a regularized maximum likelihood estimator. Finally, we compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
translated by 谷歌翻译
In this work, we estimate the depth in which domestic waste are located in space from a mobile robot in outdoor scenarios. As we are doing this calculus on a broad range of space (0.3 - 6.0 m), we use RGB-D camera and LiDAR fusion. With this aim and range, we compare several methods such as average, nearest, median and center point, applied to those which are inside a reduced or non-reduced Bounding Box (BB). These BB are obtained from segmentation and detection methods which are representative of these techniques like Yolact, SOLO, You Only Look Once (YOLO)v5, YOLOv6 and YOLOv7. Results shown that, applying a detection method with the average technique and a reduction of BB of 40%, returns the same output as segmenting the object and applying the average method. Indeed, the detection method is faster and lighter in comparison with the segmentation one. The committed median error in the conducted experiments was 0.0298 ${\pm}$ 0.0544 m.
translated by 谷歌翻译
Equivariance of neural networks to transformations helps to improve their performance and reduce generalization error in computer vision tasks, as they apply to datasets presenting symmetries (e.g. scalings, rotations, translations). The method of moving frames is classical for deriving operators invariant to the action of a Lie group in a manifold.Recently, a rotation and translation equivariant neural network for image data was proposed based on the moving frames approach. In this paper we significantly improve that approach by reducing the computation of moving frames to only one, at the input stage, instead of repeated computations at each layer. The equivariance of the resulting architecture is proved theoretically and we build a rotation and translation equivariant neural network to process volumes, i.e. signals on the 3D space. Our trained model overperforms the benchmarks in the medical volume classification of most of the tested datasets from MedMNIST3D.
translated by 谷歌翻译
Predicting discrete events in time and space has many scientific applications, such as predicting hazardous earthquakes and outbreaks of infectious diseases. History-dependent spatio-temporal Hawkes processes are often used to mathematically model these point events. However, previous approaches have faced numerous challenges, particularly when attempting to forecast one or multiple future events. In this work, we propose a new neural architecture for multi-event forecasting of spatio-temporal point processes, utilizing transformers, augmented with normalizing flows and probabilistic layers. Our network makes batched predictions of complex history-dependent spatio-temporal distributions of future discrete events, achieving state-of-the-art performance on a variety of benchmark datasets including the South California Earthquakes, Citibike, Covid-19, and Hawkes synthetic pinwheel datasets. More generally, we illustrate how our network can be applied to any dataset of discrete events with associated markers, even when no underlying physics is known.
translated by 谷歌翻译
安全可靠的自主驾驶堆栈(AD)的设计是我们时代最具挑战性的任务之一。预计这些广告将在具有完全自主权的高度动态环境中驱动,并且比人类更大的可靠性。从这个意义上讲,要高效,安全地浏览任意复杂的流量情景,广告必须具有预测周围参与者的未来轨迹的能力。当前的最新模型通常基于复发,图形和卷积网络,在车辆预测的背景下取得了明显的结果。在本文中,我们探讨了在生成模型进行运动预测中注意力的影响,考虑到物理和社会环境以计算最合理的轨迹。我们首先使用LSTM网络对过去的轨迹进行编码,该网络是计算社会背景的多头自我发言模块的输入。另一方面,我们制定了一个加权插值来计算最后一个观测框中的速度和方向,以便计算可接受的目标点,从HDMAP信息的可驱动的HDMAP信息中提取,这代表了我们的物理环境。最后,我们的发电机的输入是从多元正态分布采样的白噪声矢量,而社会和物理环境则是其条件,以预测可行的轨迹。我们使用Argoverse运动预测基准1.1验证我们的方法,从而实现竞争性的单峰结果。
translated by 谷歌翻译
近年来,变形金刚的体系结构在受欢迎程度上一直在越来越流行。调制检测变压器(MDETR)是一个端到端的多模式理解模型,该模型执行诸如相位接地,引用表达理解,参考表达分割和视觉问题答案之类的任务。该模型的一个了不起的方面是可以推断出以前未经培训的类别的能力。在这项工作中,我们探讨了MDETR在一项新任务中的使用,即动作检测,没有任何以前的培训。我们使用原子视觉动作数据集获得定量结果。尽管该模型没有报告任务中的最佳性能,但我们认为这是一个有趣的发现。我们表明,可以使用多模式模型来解决其设计不适合的任务。最后,我们认为,这一研究可能导致MDETR在其他下游任务中的概括。
translated by 谷歌翻译